Some Hardy type integral inequalities

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Multi–dimensional Hardy Type Integral Inequalities

In this paper we prove some new results concerning multi-dimensional Hardy type integral inequalities and also some corresponding limit Pólya–Knopp type inequalities.

متن کامل

More on Some Hardy Type Integral Inequalities

In 2012, W. T. Sulaiman presented new kinds of Hardy’s integral inequalities. In this paper, we derive some new extensions of the famous Hardy’s integral inequality. The results present direct generalization of the original Hardy inequality. In addition, the corresponding reverse relation is also obtained.

متن کامل

On Hardy-hilbert Integral Inequalities with Some Parameters

In this paper, we give a new Hardy-Hilbert’s integral inequality with some parameters and a best constant factor. It includes an overwhelming majority of results of many papers.

متن کامل

On Multiple Hardy-hilbert Integral Inequalities with Some Parameters

where the constant factor [π/ sin(π/p)]p is also the best possible. Hardy-Hilbert inequalities are important in analysis and in their applications (see [7]). In recent years, many results (see [1, 3, 8–10]) have been obtained in the research of Hardy-Hilbert inequality. At present, because of the requirement of higher-dimensional harmonic analysis and higher-dimensional operator theory, multipl...

متن کامل

Hardy-type inequalities for integral transforms associated with Jacobi operator

We establish Hardy-type inequalities for the Riemann-Liouville and Weyl transforms associated with the Jacobi operator by using Hardy-type inequalities for a class of integral operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2012

ISSN: 0893-9659

DOI: 10.1016/j.aml.2011.09.050